RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets
نویسندگان
چکیده
A hybrid unsupervised learning algorithm, termed as rough-fuzzy c-means, is proposed in this paper. It comprises a judicious integration of the principles of rough sets and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in class definition, the membership function of fuzzy sets enables efficient handling of overlapping partitions. The concept of crisp lower bound and fuzzy boundary of a class, introduced in rough-fuzzy c-means, enables efficient selection of cluster prototypes. Several quantitative indices are introduced based on rough sets for evaluating the performance of the proposed c-means algorithm. The effectiveness of the algorithm, along with a comparison with other algorithms, has been demonstrated on a set of real life data sets.
منابع مشابه
A Rough Type-2 Fuzzy Clustering Algorithm for MR Image Segmentation
As medical images contain uncertainties, there are difficulties in classification of images into homogeneous regions. Fuzzy sets, rough sets and the combination of fuzzy and rough sets plays a prominent role in formalizing uncertainty, vagueness, and incompleteness in diagnosis. Development of hybrid approaches for the segmentation of the magnetic resonance imaging (MRI) with the ability of com...
متن کاملEnforcement of rough fuzzy clustering based on correlation analysis
Clustering is a standard approach in analysis of data and construction of separated similar groups. The most widely used robust soft clustering methods are fuzzy, rough and rough fuzzy clustering. The prominent feature of soft clustering leads to combine the rough and fuzzy sets. The Rough Fuzzy C-Means (RFCM) includes the lower and boundary estimation of rough sets, and fuzzy membership of fuz...
متن کاملImage Segmentation for Different Color Spaces using Dynamic Histogram based Rough-Fuzzy Clustering Algorithm
This paper describes a comparative study of color image segmentation for various color spaces such as RGB, YUV, XYZ, Lab, HSV, YCC and CMYK using Dynamic Histogram based Rough Fuzzy C Means (DHRFCM). The proposed algorithm DHRFCM is based on modified Rough Fuzzy C Means (RFCM), which is further divided into three stages. In the pre-processing stage, convert RGB into required color space and the...
متن کاملAppendix: City Block Distance and Rough-Fuzzy Clustering for Iden- tification of Co-Expressed microRNAs†
In this section, the performance of the proposed roughfuzzy clustering algorithm1 is compared with that of hard c-means (HCM)2, fuzzy c-means (FCM)3, rough-fuzzy cmeans (RFCM)4, cluster identification via connectivity kernels (CLICK)5, and self organizing map (SOM)6 with respect to gene ontology. The performance of the normalized rangenormalized city block distance (NRNCBD) over Pearson distanc...
متن کاملMaximum Class Separability for Rough-Fuzzy C-Means Based Brain MR Image Segmentation
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, the rough-fuzzy c-means (RFCM) algorithm is presented for segmentation of brain MR images. The RFCM algorithm comprises a judicious integration of the of rough sets, fuzzy sets, and c-means algorithm. While the concept of l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fundam. Inform.
دوره 80 شماره
صفحات -
تاریخ انتشار 2007